Quadratic Equations: Worksheet -11

- 1. The equation whose roots are $3 + 2\sqrt{2}$ and $3 2\sqrt{2}$ is _____
 - a) $x^2 6x + 1 = 0$

b) $x^2 + 6x + 1 = 0$

c) $x^2 - 6x - 1 = 0$

- d) None
- 2. If one root of the equation $ax^2 + bx + c = 0$ is k times the other, which of the following is true?
 - a) $ka^2 = bc (1 + k)^2$

b) $kc^2 = ac (1 + k)^2$

c) $kc^2 = ab (1 + k)^2$

- d) $kb^2 = ac (1 + k)^2$
- 3. The roots of $(a^2 + b^2) x^2 + 2x (ac + bd) + c^2 + d^2 = 0$ are _____
 - a) real and equal

b) real and different

c) not real

- d) equal but not real
- 4. Both the roots of the equation (x b)(x c) + (x a)(x c) +
 - (x a) (x b) = 0 are always_____

- a) positive
- b) negative c) real
- d) imaginary
- 5. The value of $\sqrt{6 + \sqrt{6 + \sqrt{6 - -}}}$ is _____
 - a) 4

b) 3

- c) -2 d) 3.5
- 6. The positive value of k for which the equation $x^2 + kx + 64 = 0$ and
 - x^2 8x + k = 0 with both have real roots, then k is _____
 - a) 4
- b) 8

- c) 12
- d) 16

7. If the equation $9x^2 + 6kx + 9 = 0$ equal roots, then the roots are equal

to __

- a) $\pm \frac{2}{3}$ b) $\pm \frac{3}{2}$

- c) 1
- d) \pm 3

8. The value of $\sqrt{1+\sqrt{7+\sqrt{1+\sqrt{7+-----}}}}$ is

a) 2

b) 1

c) 0

- d) 3/2
- 9. The discriminant of the equation $x^2 7x + 2 = 0$ is

- a] 47
- b] 40

- c] 41
- d 41
- 10. If α and β are the roots of the equation $x^2 + 3x 2 = 0$, then $\alpha^2 \beta + \alpha \beta^2 = 0$

- a] 6
- b] 3

c] 6

d] 3