Polynomials: Worksheet -11

- 1. If α and β are the roots of $ax^2 bx + c = 0$ ($a \ne 0$), then $\alpha + \beta$ is:
 - [A] $\frac{b}{a}$

- [B] $\frac{-b}{a}$ [C] $\frac{-c}{a}$
- [D] $\frac{c}{a}$
- 2. In the given figure, the graph of a polynomial p(x) is shown. The number of zeroes of p(x) is:
 - [A] 4

[B] 1

[C] 2

[D] 3

- 3. The zeros of the polynomial $p(x) = 4x^2 12x + 9$ are:
 - [A] $\frac{3}{2}$, $\frac{3}{2}$
- [B] $-\frac{3}{2}, -\frac{3}{2}$ [C] 3, 4
- [D] -3, -4
- 4. If the sum of the zeros of the quadratic polynomial $3x^2 kx + 6$ is 3, then the value of k is:
 - [A] 9

- [B] 3
- [C] -3
- [D] 6
- 5. If -1 is a zero of the polynomial $f(x) = x^2 7x 8$, then the other zero is:

[A] 6

- [B] 8
- [C] 8
- [D] 1
- 6. The number of zeroes lying between -2 and 2 of the polynomial f(x) whose graph is given below is:
 - [A] 2

[B] 3

[C] 4

[D] 1

- 7. If one zero of the quadratic polynomial $x^2 5x 6$ is 6, then the other zero is:
 - [A] 6

- [B] -5
- [C] -1
- [D] 1
- 8. If both the zeroes of a quadratic polynomial $ax^2 + bx + c$ are equal and opposite in sign, then b is:
 - [A] 0

- [B] 1
- [C] -1
- [D] 5
- 9. The quadratic polynomial whose zeroes are $\sqrt{15}$ and $-\sqrt{15}$ is:

- [A] $x^2 \sqrt{15}$
- [B] $x^2 15$ [C] $15x^2 1$
- [D] $x^2 225$
- 10. The number of zeroes of the polynomial function p(x) are whose graph is given below is:
 - [A] 0
- [B] 1
- [C] 2
- [D] 3

- 11. The product and sum of the zeroes of the quadratic polynomial $ax^2 + bx + c$ respectively
 - [A] $\frac{-b}{a}$, $\frac{c}{a}$
- [B] $\frac{c}{b}$, 1
- [C] $\frac{c}{a}$, $\frac{b}{a}$ [D] $\frac{c}{a}$, $\frac{-b}{a}$
- 12. If one of the zero of the quadratic polynomial $ax^2 + bx + c$ is 0, then the other zero is:
 - [A] $-\frac{b}{a}$

- [B] 0
- [C] 0
- [D] 3
- 13. The number to be added to the polynomial $x^2 5x + 4$, so that 3 is the zero of the polynomial is:
 - [A] 2

- [B] -2
- [C] 0
- [D] 3